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THE PROFAGATICN OF ERRORS, FLUCTUATIONS AND TOLERANCES

BASIC GENERALIZED FORMULAS

ABSTRACT

%

3Q“The clessical formulas for the "propagation of error"

permit the approximate calculation ol the variance of a function
of variables whose variability is known. The adequacy of its
approximation has often been doubted. Generalized formulas are
here obtained, not only for average valyes and variances, but
also for the next two cumulants.

The classical formula turns out to be better than expected
-- and further approximations can be computed when necessary.

Expressing the individual variables in well chosen terms
simplifies the generalized formulas and 1ncr&ases\the accuracy of
the classical one.

Higher cocumulents are introduced to aid the algebraic

work of derivation.
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Abstract ~ 2

The classical formula for tne "propagation of error”,

1 where y = f(xl, Boy oy xk), an® the X, suffer independent

errors or fluctuations, 1s

~ o 2. 2
var y ~ 3 (5{—0 var x, = 3 f_© var X,
: B o

where the subscript o means 1 hat X1s X35 «.0 X, &re at their

average values and where we hz e written fa for the value of the

a~th partial derivative at this verage point. If the errors or

fluctuations are correlated,” this reneraiizes to

7 2
var y ~ z(%%—) var x_ + 2 z*(gﬁgd (gﬁ;)o cov gxa,xbg

a o a o
where Z* Indicates summation over all dist.nct terms with ap-
parently different subscrints actuallyldiffenent. (See Sec-

tion 38 for further detalls). These formulas ire exact when v

18 a linear function of the xts.
y = a, + ay Xy + ag X5 + ce. + a, X, 1

and inexact otherwise. They have frequently been used for pre- j
dicting the variation in a response y due to errors or to within-
tolerance fluctuations in the Xx's, There has becn s tendency to
regard their use with suspicion because of thig inexactness. There

has been no indication of the extent of inaccuracy to hold this

suspicion in proper check.
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The present memorandum develops formulas, formally cor-
rect through terms of order 55, for the average value of y, its
variance, and ite& next two higher cumulsnts. The most important
conclusion is that the classical propagation formula is much better
than seems to be usually realized. Examples indicate that it is
quite likely to suffice for most work. The generali.od formulas
allow us (1) to check the accuracy of the classical foimula, and
(11) to obtain much more accirate results in ti.e few cases where
they may be needed.

While the classical formula is often quite accurate
when used in the terms in which the problem originally appears, it
is oftern possible to improve its accuracy by a better cholce of
terms. If each of the individual or component variables Xys Xp,

voes X 18 expressed 1in terms of its partial effect on the res-

_ponse, or in such terms that its partial effect is linear, we.

shall say that the Terms are well-chosen. Unless the design value
of one or more x's has been chosen to make y a maximum or a mini-
mum, 1t will usually be possible and practical to use well-chosen
terms. In treaﬁ}ng the delay time of a délay line made up of LC-
sections, for example, we are led to express component variables

in terms of the square-root of inductance or the square-root of
capacltance, In treating the attenuation of a T-section attenuator,
for further examplé, we are led to specify the shunt elements in

terms of their conductances and the series element in terms of its

registance,

S S TS B SRS S



Ap2Trast - &

Keeplng further terms wil} require attention to the
skewness of distribution of the individual variables, measured

conveniently and dimeaaionl&aaly‘by

Using I* again to indicate summation over all distinct terms
with apparently different Subscripts actually different, ueing
7, and 0y to describe the distribution of the a-th individual
variable, and abbreviating the various partial derivatives of f
evaluated when X1 Xps eee, X, are each at its average value as

1llustrated by

g 33r
aab = Bx ax axb

1: g all x's at average values,
We can write that propagation fowmmula for the variance which
applies when (1) fluctuations in the various X, are lndependent,

and (11) the X, have been expressed as to make partial effects

linear quite 8imply as follows:

£ 2 2
=
var y 3, a 9
+ T¥(F Ty * £y ok fnﬁ)“ :
S0
¥ (E a aabb+ fab faab 4 § aaab b )7" 92"
6
+ terms of order 20
AR L3 PO s . 1. st bt st — mmmmm%@wmmmww@gm i e %:’%Wj
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Abstract - 4

Varicus aspects ¢l this formula deserve attention:
(1} There %is no term of order ¢°. Under our assump-
tions the flirst correction teryr is two orders higher than the

leading terr. Thus the leadl g ter: does better thern we might

expect,
(2) The first correction term involves both second

(f_, ) and third (f and f_,. ) derivativ>s on an equal “ooting
ab’/ — aab abb

and with eque.. coefficlents.
tives, we should go to che third derivatives,

(3) Through terms in 05, which 1s usually further

than we have any excuse to go, we need only the values of the
9 ana the 7a" Fewer quantitles enter than we might fear.,
i14) Much, but not all, of this simplicity comes from

express .37 the individual variables in proper tems. The general

formula would have 8 terms instead of 3. Correct cholce of terms
is very helpful but not essential,
The parallel formula for the average is

ave y = y,

| 2 2
» Z*(E faabb)cé %

5 z*(%ﬁ'faaabb)7a°a3°bd

+ terms of order > 06.

Analogous formulas for the third and fourth cumulants are given

in the body of the memorandum. (Table 1, page II-6),

If we are to go beyond Tirst deriva-
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It 1s ofts~ “adwmible % Péduce or e.iminate the first
correction term in the .- acy Tunuia by changing the teras
in which the response s expressed, (In the examplcs cited this
leads to multiplies of (1) the cube of a constant less ghe delay
time and (11) the cube root of tle attenuatlon plus a constant.)
While the possible advantages desc~ve being kept in mind, the
first correction term 18 usually small enough so that this re-~
finement 1s unnecessary. (The general question of simplifications
is discussed in Section 9, pages II, 9-11.)

if the individual variables are not necessarily ex-

pressed go as to make faa’ faaa’ etc. vanish, but do have inde-
pendent fluctuations, the propagation formulas are less simple,
but can be expressed as in Table A, following. (Similar for-
mulas for propagation irnco higher cumulants are gilven on page
I-8.) These formulas require more information about the fluctua-
tions of the individual variablecz ~- infcormation provided dimen-

slonlessly by the values of Fa and Ga’ where

i

and

e e S >er

s gy G b vt A S et - ipanies i : z - i




L

e T
Bt el

i

g

G RS e

Abstrace - 7

Table A

General Propagation Formulas for Individual
Varisbles with Independent Fluctuations

ave y = ¥,

var y

+ %'E faa o

+ P ‘
% Z foga 7a %

2
a

3

A

4
* f% 2 faaaapaaa % % ¥ faabb % %

5 B : 3
* I%U Z faaaaa Ga aa % ki) Py faaabb 7a %2 %

+

+

3+

+

2

terms of order 2> cé

2

2
% fa A

g T o 3
21y fag 7a %

S ) 2 4
% 2 £y faaa I1a 9. * 1 Z hy, (Pa 'l)aa

2
(£, foppt fap” * faap ful 93" %

5
)Ua,

£

£ £, G ol +2rf, £, (G -7y,

e
12 &4 ~aaaa a a
A 3

i ;
i Z*(% fa faabb g faa fabb v fab faab * 3 faaab fb’ Ya% %

+ terms of order 2 ¢

{Note that the whole coeliicient of Tq

6

£ ab2 is symmetrical so

that only one of (a,b) and (b,a) is summed.)
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Propagation formulas for the case where the fluctua-
tions of ~he individual variables are not indepondent are of in-

creased complexity, and will be reported later.

“he ¢ mputations leading to the formulas are simpli-
fied by the intrcduction for the next two higher cumulants of
fco-' quantinies related to the-e cumnlants as the covariance
is related to the variance. ‘hay involve 3 and 4 argumen*s,
respectively. (Definitions may be found in Section 19, pages V.
1-2).

The 'structure of the detailed account is indicated by
the following table of contents. Results are stated and dis-

cussed in the first four parts, with 4stails left to the remain-

ing parts.
The examples have hws: treated both by "main strength
and awkwardness", and by more Eo«lihed methods, so as to give some

idea both of what would be required for less simple examples and

of how easily examples can be handled,

Section Title Pages ,
5 Introduction e 132 i

I PROPAGATION

<  Moments I.2 to I.4
3  Propagation into average and variance Ioh to I.7
4  Seminvariants of cumulants T il b
5 Propagation into skewness and elongation P L g )
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1. Introduction

b Fluctuations in "individusl” or "component” variables often
combine to produce fluctuations in a "resultant”, "syster" or "overall"
veriable -- fluctumtions in a response. Two classical examplec are
the combination |"propagetion") of errors of individual operations

in a physical measurement and the combination of within-tolerance

B

fluctuations in a mecharical or electrical assembl . TIn these situa-
tions, as in a wide variety of others, it is ofte: desired to relste
the distributions of component fluctuations to the distribution of
resultant fiuctuations. For a long time, physics has used the formulas

for "the propagation of errcr". With the rise of modern statistical

theory, it har been natural to regar. the propagation-of-error formulas

: ae doubtful first appreximations, and to try +o avoid their use in
. situations of complex Jdespendence, even at the cost of proposing great

complications in stuly or experiment or even, perhaps, at the cost of
seeking no answer to the provlem.

Insufficient attention seems tc have been given to the ques~
tion of how accurate, or inaccurate, the propagation-of-crror formwss

would be, or tc how tney may be improved. The obvious

& %W% e L
Sl




first step 18 to obtain and study better approximaetions, When

thls is dcne, the classlical formulas turn 2ut to be better than
J most of us had suspected,
But more can be done., The typlcal problem is naturally

express<d as follows:
Given the functional relation

z = h<le WQ; vaey Wk) 3

and given information about the distributions of the individual
w's which distributions have been 80 chogen as to make the values
of z be distributed near z, what 1s the probabillity that, given

a "tolerance" + & [or - or both], that z will exceed z, + 6 [or

fall below Z, - &5 or either]?

< There 13 nothing in the expreszion of this problem
whlch requires us to work in terms of z, rather than za, log z,
v  Zz or z3: We can translate the boundary value z + & [or z - €]
into each of these scales, or any other, Similarly, we may re-

place Wy by wlg log Wis Or any other helpful function. And we

may do the same with w,, w., cenvs W.. This we may as well work
g Kk

with variables y, Uys Ugs «oe, U, a functional relation y = f(ul,

Ups «ous uk), and a tolerance Yo + 6* [or Jo - €*] 1f we gain by

doing this, It will appear that we can increase the quality of

approximation of the blassical propagation-of~error formula in

this way.
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while the same techniques, concepts and insights could

be applied to the combination of (statistically) dependent fluc-

tuations, the problem of combining {ﬁaetistfgaiiy) ‘ndependent

fluctuations, =-- which leads to 8li,. e results -- 1s of suffi-

clent importance to lead us to treat only that case, (Arter 211,

most practical problems with deper. ... fluctuations can be con-

verted into problems with indepent = . .nes by pushing back to

sultable variables -- often to varis ~s earlier determined.)

I  PROPAGATT..

2. Moments

The basic tool of "propeg.-.. n of error" has always

bcen the "mean square deviation", ¢r. as statisticians now say,

i

§ the "variance". If we are to go tn . ire detailed approximations,
% we must expect to supplement this w!th more complex gquantities.

% The analogy between probai ! .ty distributions and mass
: distributions and the moments of for.~ area, etc. of mechanics,
§ early led to the description of prou._t _lilty distributions in

terms of "moments", elther about zero
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Hy = fzgp(z) dz
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fg w& LI T »
My = 12 plz) dz = ave z
o

* ¥

or about the mean or average z or Hy \this notatlion 1s used as .
f
well as ul) of the given distribution

p —_— 2 . 2 — 2
oy = J(z - 2)" p(z) 4z = Hy = My = ave (z - Z)

gy = j(z -2)3 p(z) az = ué - 3ulué + 2u13 = ave (z - 7)3

Ky = I(z - )" p(z) az = ui - ﬂnlué + 6u12ué - 3u14 - ave(z-7)"

‘. @& 8

While the dimensions of K, are the same as those of z, the dimen-
sions of “2’ u3, ... are the square, cube, ... of those dimensions.
It 12 often convenient to make this clear by introducing another
quantity cf the dimensions of z, together with suitable dimension-
less coeffiéients. This .s most easlly done, as has been done for
a long time, by introducing the root-mean-square deviation, now
commonly callc’ the standar: deviation, o, where 02 = uz, and ex-

pressing ua, uu, ..., as suiltable multiplies of 03, 04,

Varlous systematic notatlons have been proposed for the dimension-
less multipliers. but thelr use seems to lead to complexity of no-
tation whenever several variables are involved. Consequently we

shall here use the following rather unsystematic notation

SRl e (2-2)2 = I(ZME)z p(z) dz,

e
&
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G f e, &
= ave {z»ziﬁ = {{z-2)" plz) dz,

L

re’ = ave (z-2) = 1(2~E)Q p(z) dz,

{1

Gc5 = ave (z~5)5 %(Z-E)S piz) de.

We call y, I, and G relative third, fourth and fifth moments.

3, Propagation into Averages and Variance.

If now we write 0, 7y, Pl and G1 for the correspond-
« ing quantities associated with Wy and, similarly Ons Yoo P2
and G2 for those associated with Wos and so on and on, we can

write down the generalized propagation of crror formulas for the

case where

RN

A

7z = h(wl, Wos +ees wk)

and the fluctuations in Ql, Wos eoey Wy are 1ndependent. These
: formulas involve the partial derivatives of h(wl, Wos ooy wk),
evaluated at the point where each W a & 15 25 “smannlcrtakes HiCs
average value. We denote such numerical values of partial de-

rivatives -- such derivative values, as we shall say later -- by

. where the number of subscripts

h hﬁ’ h

By Rags N939s aab’
shows the number of differentiations and the particular subscripts
specify directly the subscripts of the w's wilth respect to which
these differentiations were carried out.

If we write Zg for the value of z when all Wy are at

PP R R W

thelr average values, then
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3
E i T

“o0
1 . 2
J +5ih, o
i ,
* 5 2 Ngan 7,9

'} 4 r ) 2_ 2
g 2 haaaa féoé t g 2 haabb % %

il 5 1 3.2
* 120 Maagas Ca%” * 17 2 Bogavp 7a% %

6

+ terms of order > ¢

.

where the gtarred summation silgns are to be interpreted as in-
cluding each distinct term which does not identify subscripts

3 once and only once. Thus Z*cagqbg would include 042652 once
(not as GAEGSQ + 052042) but not cha, while 2*053052 would in-
clude 043052 + 053oa2 (and not merely one of these) but not 045.
This same convention on starred summation signs will be followed
throughout. (Note that Noapp 18 symmetric in a and b by its
definition.)

Similarly, the variance is glven by

Z n a

!!

var z

7 1
G ha]’aa ')‘a O'a

(formula continues)
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Z hh g9, +*rph “zﬁmigga”

2
+ EM(hyhypy + hgp” + hyah b)" o’

1 a o _ B

- 5
* 13 EN000%% 52 By aPaaa 0750,

1 1
+ 3*(§ Babgapy t 7 Naalapp + NabMaab

1

& 2
* g haaabhb)7aga %

6]
+ terms of order > o

The first term on the right hand side is, of course, the form
which the classlical propagation of error [ormulas take for the
4 case of independent w's,
If we should be content to assume that the distribu-
tion of z were normal (= Gaussian), then we might answer our
target question easily. For the tolerance § corresponds to a

standardized deviate of

(zO + 86) - ave z

var 2

which 18, in case of normality, easily converted into the prob-
ability of exceeding 6 by making one reference to a table of the
cumilative normal distribution., However, such an assumptilon
could sometimes prove most dangerous, since for example, hl‘wl’

WA s wk) and he(w1, Wos ooy Wk)’ where h, = 17( 1 2150)22 cannot
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both be nearly normally distributed, We must be prepared to
carry our formulas further, 2ither so that we may show the
normal approximatlion satisfactory, or so that we may do better,

as cigscumstances dictate., It 1s ﬁ;tural to attempt this by using

the higher moments of z.

4, Seminvariants or cumulants |

There 1s much to galn by avoiding a frontal attack
on these higher moments. First Thiele, and then R. A. Fisher,
have vigorously polinted out the advantages, particularly when
effects are being comblined, of replacing the highe~ moments about
the mean by another set of quantities, called seminvariants or
cumulants, for which the notation K15 Kp, K3, ..o is usu;i. The

first two of these are the "average" and the "variance". There

has been no general agreement on similar names for the succeeding

quantities, but the word "skewness" has long been associated with

);’\‘*il.w’»-%«mw g

X3 Although, unfortunately, "skewness" has also been associated *“
with various dimensionless quantities;, we shall here call KB it-

o

Wi

gself the "skewness", with the natural 3-letter abbreviation ske z
It is the - last cumulant to reduce to a moment about the mean
(x3 = u3). In qual;tative terms 1t usually tells us about a dis-
symmetry of the distribution concerned -- positive skew corres-
ponding to a "longer" tail -- one more slowly declining to zero --
on the ri - hand of the distribution than on the left -- negative

skew correspondinz to the mirror image of this situacion.

L Lo o +> s 2] i e i 3 = . Lk ™" t S e s 6 g Mieis s v K sl el o
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The next, fourth, cumulant, x; = i -3K o has long
4 & 2’

been connected with the word "kurtosis" -- a word which led even

eminent statistlicilans to mnemonic devlices. We shall use, as an

interim measure, subject to a better suggestion, the term "elon-

gation" and the avbreviation elo z. Positive elongation usually

means that the talls (or possibly one dominant tail) of the dis-
tributlon fall toward zero more slowly than 1is the case for
(comparable) normal (Gaussian or Maxwellian) distributions.

2 3 - 9.': - 3 . i
Thus distributions with talls decreacing llke € . , rather than

like e'czg, are almost sure to have positive elongation. If

the talls are shorter than those of normal distributlons, as no-

tably in rectangular (sometimes called uniform) distributions,

or in U-shaped distributions, the elongation is usually negative.
Various devices have been psoposed to make use of in-

formation from higher moments or cumulants in gselecting better

approximate distributions than the normal. Three broad classes

deserve mention here, although none of them is available ade-
quately packaged for easy use.
Methods based on transformailon into terms of increased

normality were sctrongly urged by Edgeworth in the early years of

this century. However, no generally useful methods were developed.

Transformation in the special situation with which we are now

dealing 1s investigated in Parts IV, VIII and IX, with mildly dis-

couraging results.

kol
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Methods based on serles expansion 1rn temms of succes-
sive derivatives of the normal dist~ibution have a respectable
antiquity, were modified by Edgeworth, and were brought into
thelir most useful and easily usable form to date by Cornish ard
Fisher* in 1937.

Methods based on a family of curve shapes based on a
certain differential equation with a number of adjuscable para-
meters were introduced about thz turn of the century by Karl
Pearson. Practical use of these "Pearson curves' has tended t¢
be onerous, until the appearance in 1951 and, in improved form,
in 1954 of convenient tables of % points** in standard measure
for distributions following Pearson curves. In ilnstances where
a sténdardized deviate falls somewhere near & tabulated value,
those tables offer the handlest solution so for‘available, and
their use, together with the use of Cornish-Fisher technique
might well have been described in the present memorandum. In
view of the fact, however, that a still more convenlent packaging

seems possible, all detailed discussion is being omitted.

*E. A, Cornish and R. A. Fisher "Moments and cumulants 1n the

specification of distributions"” 4 Revue de Institut Infern.

de Statistique 1-14 (1937) reprinted as paper 30 1n R. A.
Fisher, Contributions to MaThematlcal Statistics, New York,

Wiley, 1950.

*#Maxine Merrington and &, S. Fearson "Tables of the 5% and
0.5% points of Pearson curves (with argument p1 ard P2) ex-
plored in Standard Measure" 38 Biometr%ka 4-10711¢51) also
1n improved form as Tabie 42 of Biometrika Tables for Statis-
ticilane, volume 1, E. S. Pearson and H. O. Hartley edltors,

Cambridge University Press 1954,
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Zither the Cornish-Fisher or Merrington-Pearson tech-
nigue starts convenlently from dimensionless ratios of cumulants.

Those entering 1into the Cornish-Fisher formulas are

y, = ske z . a
1 [var z}j/2 ;;37?

and

v, gle® My -3
e [var z}z ugg

both of which vanish for the normal distributicn. Those enter-

ing 1nto the Merrington-Pearson tables are

2
By M3 [ske =z ]2 . 2
- u93 [var z ]3 1
o
By = —p =3+ SL0% R
' “‘2 fvar 2z J

whose values for a normal distribution are O and 3. Both ap-

proaches make use of the scandardized deviate, or deviate ex-

pressed 1n standard measure

+6) - (ave z)
v, var z

relating this elther to a modified deviate which may be referred

(z,

to a unit normal distribution, or directly to the probability of

exceeding z + 6.

N A
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L Tc keep the record ciear, we must emphasize that both
methods are only approximate, though in practice usually ade-
- quate. Zxperience with the Pearson curves near the % points so

far tabulated has been excellent. In further view of the con-
venlence of the Merrington-Pearson tables, their use for true
prcbabilitles of exceeding tclerance betweer, say,.0.3% and

8% is at present to be recommended. For probabilities
greater than about 10% (and less than 90%) Cornish-Fisher treat-
ment may be r:st. In elther case, at the user's cholice; the
purpose of more detailed calculation may be either to indicate
the adequacy of the normal approximation, or to provlde a better,
satisfactory, approximation.

5. Propagaticn into Skewness and Elongation

We can now state the analogous formulas for the leading

terms in ske z , and elo z , namely

e 3 3
Bke 2z b ha 759,
3 2y Ip 1) ¥ 2 2
+332h n (T, 1)ca + 63* h hyho o, o
1 2 5 3 2in _ 5
+ 73 & hy haaa(Ga"’&)Oa + ¢ S hh (Ga 2ya)oa

I 2 S B
* 3 Z¥ by (7571) 9,79

)y. 0302

2
+3 2% +2h h h +2hh o n 74050,

a ‘abb aa‘'ab’b a aab’'b

6

+ terms of order > o
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and

4 4
eloz =2Zh, (ré~3)¢é

3 14 . 5
+ 2 £ h"h,, (0 4 7a)°é

+ terms of order > 06

The detalled correctness or the results of this ac-

count, both above and in sections to ccme, owes much to careful
checking and error finding by Miss M. S. Harold. Thanks go to

her from the writer, both on his own behalf and oa behalf of

future users.
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SIMPLIFICATION BY CHANGE OF TERMS FOR _INDIVIDUAL VARIABLES

6. General
We come now to the uses of changes in the terms of study.

The fraction of some population of electronic assemblies with a
certain frequency greater than 400 cycles per second 1s, of.course,
eéxactly the same as the fractions (1) with the square root of the
frequency greater than 20 (cycles/%ec)l/é, or (11) with the common
logarithm of the frequency (in cycles per second) greater than
2.602067. If it is easler to work with one of these equal fractions
rather than elther of the others, it is clearly to our advantage to
do so.

In some clrcumstances, where the use of unfamiliar terms

of analysis 1s called "transformation", or even "transforming the

SR ER v o

data" there 13, to the minds of some, an unfortunate flavor of
"cooking". While that feeling 1s almost always (1f not always!) :
unjustified, in the present situation there 1s no slightest excuse

for a similar feeling. Suppose that individual assemblies are

T T

tested -~ for attenuation, resistance, amplificatiion, critical fre-

quency, or what have you. And Suppose further that the result is

:
k4
4
|
g

displayed by the motion of a needle across a scale. Certain points
on that scale correspond to assemblies below the tolerance, others
to assemblies above tolerance. And this need be changed in no way
whatsoever i1f the numbers on the Scale represent, for example:

(1) ohms

(11) /ohms

SR oo
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(111} logarithm of ohms
(iv) (Ghms)“ifa
(v) fnhms}"l = mhos

or any other aimilar scale. Juset so long as the needle's position
exactly at the tolerance 1s kept the same, Just so lonz will we be
dealing with the same problem.

All this has referred to changes in terms from z to some
function y of z. The situation in a change of terms from some W,
to some function Va of Wy is similar, but not identical. If we
are to use either the classical, or the generalized, propagation
formulas, we need to know something about the moments of the dis-
tribution of W, 1n one 1instance, and those of the distribution of
v, on the other. This fact seems to have worried persons with a
mathematical background and orientatlion far more than it should =--
ag 1s rather natural. If one starts to treat a situation by say-
ing "Let us assume that we know the low moments of the wa" and,
presume that "we may treat the jocint distribution of the w, as
multivariate normal", and sticks rigidly to these hipotheses, as
would be apprcpriate in pure mathematics, then he must realize that
he does not know the low moments of the LI exactly, and, moreover,
if the Joint distribution of the w, was exactly multivariate normal,
then that of the v_ cannot be. If the first set of starting hypoth-
eses was taken as gospel engraved on tablets of stone, then the
transformation appears to weaken and distort the availabl; knowledge.
But 1n a practical situation this is only an appearance, 'One never

knows the low moments exactly, and, although one'may ha&i%fairly
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£ood estimates, one often does not. (In tolerance analysis situa-~

tions the low moments are often of a "but what 1f" character, and

are far from preclse.) Moreover, 1f approximate normality could be

agsumed for the w's, 1t 18 not unlikely that approximate normality

can be equally well assumed for the v's. We must never forget
that, 1in applications of mathematics, exact hypotheses are usually
only approximations to the real situations and that other approxi-
mations may be as good, or even better, as those we first made.
This apparently subversive, but actually usually unim-

portant, effect of transformation of individual variables 1is enhanced

in dealing with propagation formulas. These formulas involve de-

rivative values at "the average point", and the average value of
A where Va 18 a gilven function of W 18 not exactly the same as
the given functlon of the average value of W,. Thus the average

point shifts under the transformation and the derivative values we

T

need are not only for derivatives with respect to new variables,
which we can evaluate by simple transformations, but are evalua-

If we had known the old average point exactly,

e, U

ted at a new point.

then this loss 1n firmness would have been relevant, though prob-

S

ably not serious. But we usually do not know it exactly, and in

practice we are not. appreciably worse off,
Thus, while it 18 conceivable that we might be able to

handle the moments of the Wy and evaluate derivatives a% the wa—

average point -- and still not be able to do the same in terms of
the v, -- such a sitvation 1s most unlikely to occur. In practical

sltuations, transformation of individual variablep may usually be

undertaken qulte freely.

v e s : s A R S S s Baaa T %?ﬁ%ﬁ’m@“ -



7. Transformation of the Individual (Component ) Variables

We can discover these transformations by complex arguments

if we wish, merely by letting w. be some function of Vs and find-

ing successive conditions on the derivatives of this function to

make more and more terms vanish. nd then finding a function with
. these derivatives. But we may also avold all this.

Consider what happens if all w's except wa are at their

average values, then z depends on w, alone, but usually not in a
linear way. If we may reasonably define v, 30 as to make this de-
pendence linear, then in

z = g(vl’VE""’Vk)

the higher unmixed derivative values St BRL 5 Baaag° which we

shall later refer to as successive derivative values, will all

vanish, and the formulas will be simplified.

S

When may we reasonably dc this? Anytime that z 1s a
strictly monotonic (ever-increasing, or ever-decreasing) function
of each W, over its normal range of varlation. For if we write

Wi, Eé,.n.,ﬁk for the average values of Wis Wos ... W, and

i

| Valig) = BTy g s T )

for the value of z = g(wl,wg,...,wk) with all the variables, other

than w,» at their average values, then wa(wa) 18 naturally described

as, and called, the particl effect of w_ at the average point (reall
a y

along the line through the average point for which Wy WE""’wa-l’

e o B B b O A5 B LA ST N R ST B S AR oo ;
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Wap1s o oWy all w's except W, are constant) If we could

introduce va{l) = wé(wg} 48 a new variable, so that

| describes the response, then the Successlve derivatives (after the
; first) of g(l)(—,—,...,—) with respect to va(l}, evaluated at the
i v-values corresponding to the w-average point will vanish. This
will be so because z = va(l) 80 long as the v(l)'s other than va(l)
i are at the values corresponding to this point, since the w's other
than w, will all be at their average value. Two difficulties then
i remain: First, the transformation may not be permissible, Second,
we wish the successive derivatives to vanish at the v-average point
rather than at the W-average point.

The transformation will fail to be permissible if two
values of W, correspond to the same value of wa(wa). In practice
We requlre such single-valuedness of the inverse only for valjies
of W, reasonably near Wé. Such a failure of uniqueness will .
ordinarily only occur when, because of design (or perhaps by acci-
dent) the nominal value of W, has been chosen to make z exactly
Oor nearly a maximum or minimum with respect to changes in LA
In most such situations ha will be small and haa will be important.
It will then be possible to choose vV, 80 that, while ghe does not

vanish, g = ... = 0. (Details are left to the reader. )

aaa =~ Baaaa
With this exception, then, fthe transformation wlll ordi-

narily be permissible, and we need only be conecerned that the v(l>-
average point 1s not the same as the vi-average point. If we did not

-
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know the location of the w-average point preciscly, this fact will
not concern us very much. Either we did not know the partial effect
very well either, aince it deper.ds on the average point, and every-
thing 1s really about equally hazy, or we were able to work with
formulas in which the coordinates of the w-average point is ex-
pressed by letters which we may substitute for when we are done --
and nothing prevents us from makirg a substitution corresponding
to the new average point, although (1f we have exact knowledge)
we may have to iterate a little to find the correct values for sube-
stitution. Thus the shift-in-averagefpoint-problem is not likely
to be important.

If we follow the brogram suggested above in detail, we
would reach

Zie g(vl’ V2:~--:Vk)

'with noc only

but also

for all a. It 1is often natural to introduce particular v's which
make the successive derivatives vanish, but do not have sil g, = i
We begin, then, with this more general case, .

8. Reduced Propagation Formulas .

In the usual instances, we are menedaf i system-component
terms, planning to measure the performance of a component by the .
performance of a system containing this component but with all the
other comporents selected to be at the mean values of each's dis- .

tribution. :

S
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5 Uader these conditions, the formulas simplify consider-
ably. We ncw have z = g(vl, vg,...,vk), where
‘ (1) the v, fluctuate independently,

(2) 8aa’ 8445 tPc. all vanish,

and the generalized propagation formulas reduce to those of Table 1.
Notlce that, although the first correction terms to the average,
variance and skewness are all of order 04, their Pelafive orders

are 04, 02 and o, respectively. Thus correction terms are moat

likely to have made a noticeable fractional change in the skewness,

next in the variance, and least in the average. Note further, that, ;

except in the leading term for the elongation, only the variances

g £ and skewnesses 7a0é3 of the individual variables, the Ve enter

a
the generallzed propagation formulas in terms of order < 05. Thus

R s

i

the requirements as to knowledge of component variability‘(ig the

new terms!) are not as stringent as we might have feared.
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/
g
‘
kY

e o



'sm P

A

- II-8 -

Table 1

Propagation in the JSpeclal Case Where 8.0 Baaa’ ete., Vanish

(Individual Variables measured proportionately to partial effects)

ave z =
var 7 9=
ske z =
efiph Yziei=

(Symmetry of
ing %)

e

(1.e. z calculated at the average point)

1 2k 48
t g 2* 8-abp %4 %

1 =
T I3 2" Baaapp 7a% %
, 6
+ terms of order > o
Bt
z2g, 0, (1.e. the classical term)
2 o b
e (gagabb it €ab " gaabgb)oé. %
/1 1 2
t 2% {5 838000 T BapBasb T 3 82250507 72% %
: 6
+ terms of order > o
3 3
28" 73%

-+

+

+-

2 0
63% 2,8,8,1,9, 9

y 2 A8
32% 8.8, (7471)0,70y
3 2 : 3 2
5 Z* (ga Eapp T angaabgb)yaca %
6
+ terms of order B &
L 4
AR

2&,

‘O "

+ terms of order 280

gab

and 84abb in a and b to be recognized in interpret-
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We are now prepared to seek furtrer (ondensation of these
propagation formulas. We may gain a little by arranging for =11
the 8, to be unity -- we had already expressed the individual vari-
ables 1n terms such that Bag?
choose the size of the units in terms of which they are expressed.

PTE etec. all vanish, we can still

We shall then be measuring each individual variable exactly in
terms of its partial effect of 1its response. (This 1s entirely
analogous to inspecting components by measuring the performance of

a standard system in which all other components are at the average

values of their distributions.)

If we 1Introduce reduced or standardized quantities e

through
a

then rae will be the variance of the reduced variable Xa = gava.

Moreover, es and Fa will be the same for the distribution of X,

as for that of v, We only need to define scme t's by

ey P _ Babbp 4
s
ab gagb abbb gang ;

and the like, where the subscripts, as on t's and s's generally,
do not mean simple differentiation, in order to obtain the pro-

pagation formulas in the form given in Table 2.

L - e o e s e s« R T T et ki L
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Table 2
The Propagation Formulas In Reduced Form

{Individual variables measured as partial effects)

ave z = g (1.e. 2 evaluzted at the average point)

il 2
+ o2 gﬂ taabbgTa L

o

cose M e Bk
Y. éTE taaabb)yaTa i

+ terms of order > T6

=)
YRR A ¥ AR T (1.e. the classical term)

2

, B Sy B
ab Y taab

e, e (
it * Cabb) Ta T

i | 1 3.2
+ o2 52? baabb * Yaplanp * 3 taaab§7aTa Ty

+ terms of order > 16

ske. zi=5 7aTa3 (1.e. the sum of component skewnesses)

e,
+ Z* (6 tab)'ra Ty

é 2 3; 2 2
+z* (3 tab )(7a'l)TaJTb +Z%(3taab'i’%tabb)7{3.1'::137‘0

6«
+ terms of order b ¢

——

elo z. = % (r%~3)raa (i.e. the sum of component elongations) {
D |
+ terms of order et .
(Symmetry of tab and taabb in a and b to be recognlized in interpret- U
ing 5*,) b ]

e
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In preparing Teble 2 we have tried to throw each for-
mula into its most usable form, and have consequently combined
4 numerical coefficients with the t's they modify. In general, the
most Ilmportant terms, beyond the leading term in each formaula,
seem likely to be the second and third terms for the skewness and
the sccond term for the variance.

9. The Causes and Justifications of Simplification

We have now reached a fairly compact set of propagation
forrlas which contain all terms through those of order 15. It
is time for us to inquire into the assumptions, explicit and im-
plicit, which have entered into the development-indicating the
Justification, complete or partial, of each. The list to be ex-
amined includes assumpticns that:

(1) the functions considered are sufficiently

differentiable to have convergent Taylor
series,

f11) the functlons considered are, locally,
sufficiently 1like polynomials to be reason-
ably well approximated by the first terms
of their Taylor series,

(111) the varlables taken as individual (= component)
variables have independent fluqtuations (at
least the cross-moments of order < 5 vanis.
when the variables are expressed in particular

terms),
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{iv) we WLy use an expansion around the average
values of the indlviiual (= component ) varprl-
ables, expressed ln whatevep terms we may use,

(v) the response (= overall) variable is a strictly
monotovie function of each Individual (= com~
ponent) variable.

The strength of (i) and (11} can be falrly well dlscussed

In terms of z = h(w) where the function h s useu as a rectifier,
If we have a quadratic rectifier, z = cwg, then the basic formulas
(though nct those reduced by transformation of individuals) will
apply. If we have an ideal linear rectifier, z = bw|, then (1)
falls because of the misbehavior of the derivative at zero. If

we observe that actual "linear" rectifiers Jeviate fron 'ideal!
behavior at Zeéro, and manage to behave as if they have a continuous
derivative, we find that (1) 1s satisfied, but that we are likely
to be troubled with (11), since the rirst derivative is nearly
constant, except near 4ero, where it changes rapidly. This may
well be far from poiynomial behavior! Only 1if our 'linear' prec-
tifier 1s quite farp from 'ldeal!' can we expect even generallzed.
pPropagation-of-error formulas to 5@ a close approximation. The
application of (1) and (11) to other, more complex, situations
tendsto follow the pattern set in thisg example. If a single

vaiue of each first partlal derivative 1s sufficlent to gulde

even the roughest design (and sometimes when this 1s not true)

both (1) and (i1) are llkely to be well enough satisfied,
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. The classical formulas are frequently written, not only
for independent variables

Viahs W the b

but also for the general case

ar )2
Vo onl e 3 552“; var X,

relin] () er twm)

Why have we not followed the pattern in settiig forth the general-
] lzation? Both because it would be difficult, and because 1t would
really add little. The added complexity, for the classical formula,
¢ is small, and pays for itself in flexibility -- 1n the abillity to
work with intermediate varlables whose variances and convariances

have been already obtained by previous uses of propagation formulas

~- 1n the abllity to deal with situations where it is hard, or in-
convenient. to find statistically independent variables. In prac-
tice it seems to be the first ability rather than the second which
1s usually important. Thus the avallability of the classical for- &
mulas for the dependent case buys something, but not very much.

Bullding provision for statlstically dependent component variables &
into the generalized formulas would greatly complicate them -- so :

much so that it seems unlikely that terms beyond those of order -

. Tﬁ (or perhaps 14) would be written out, Thus the effort of seek-

ing baslc individual variables with independent fluctuations is

R N
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likely to be far less than the effort of wWworkling with formulas
for dependent ones. Thus (1i1) has much practical fustification.
(In those instances where it does not hold, 1t will, of course,
be necessary either to use the classical formulas or develop
further approximations.)
What of the remairning assumption -- that we use an
expansion around the average values of our individual variables?
When we recognize the ilnaccuracies of our knowledge 1in any prac-
tical application, this assumption dces not really seem serious.
: If our knowledge 1is basically mathematical and approximate;, galned
by calculating values of partial derivatives at a certain point,
then it may be true that this point would not be the average point
in a real situation. But 1t 1s quite likely to be true that we

do not kuow accurately where the real average point will be. This

E means that we must interpret cur derivatives, and all that hangs
% upon them, with caution and scme allowance for variation. This
% will be the case for any formula, whether or not it expands arouna

the average point.

In order to deal wisely with this possibility, we need
to know how the 8, and tab change when we move from the point
Vi0° Vogrres Vi to the nearby point Ve Vogpseees Vi If we

let Vis Voseen, Ve be the displacements, as measured by the re-

sponse at the average point, 1i.e.

% Va = S(Vlo,veo,..., Val,...,Vko)-g(vlo,vgo,...,Vao,-..,vko)

A O L. S NN B e o 2 N AR R PR EER pas a PR M B,
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then the original forms and first order correction ternns are in-

dicated by the following erpressions

/ N .
tab(l * Zc(tabc"tac"cbc) ¥y + see)

(1+z(t -2t -tbc)vc+...)

aab aabc” ac

and so on, including

=3t =2t v+ ...) .

& ac be’ €

aaabb(l ) zc(taaabbc

These formulas provide the necessary gulde, should 1t ever be
necessary to quantitatively Judge the adequacy of the approxima-

tion with which (iv) holds. We may expect that it will usually

be good.
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10, The First Example

We now report the results of gquantitative discussion
of two moderately simple examples beginning with the time delay
of u lumped-constant delay line, each s=ction »f which consists
of an 1nductance L and capacitance C {initially) of the same
nominal values. (The detalled c¢alculatlons nay be found in Part

VI.) The orig anal functional relation may be written

delay = z =,/ Ll @2 + ./ L3 Ea & ova BY L23~1 CEJ

where we have used odd subscripts on inductances and even ones

: on capacltances so that a subscript pcints uniguely to a com-
ponenct,
g For convenilent insight, we fix the units for L and C
? 80 that their nominal values are both 10. This means that o 5
; corresponds to a standard deviation of 10% in the inductance or
. capacity of comporent a. (Realistically, then, o's may be as
1 large as 2, but are more likely to be fractions 1like GOy QiR b
0.06.)
Direct application of the original formulas now gives
(terms arranged in order of size of coefficient -- those with
coefflcients smaller than 0.00C005 omitted)
, 2 3
ave z = 10J - 0.0125 3 s o 0.00062 3 N
%
i , L g RE ] 4
§ + $ B
:
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B

R var = =~ (.25 zggéd - 0.01250 Xry&§&3

P T VI 4
+ 0,00016 gtw(5 -1 "My 0 - Bogy g Opy + (5T, =1)0y, ]

2 . e 2
+ 0.00002 2(G,~y)o,”-0.00003 2(721_1621*1+721621)321*1 Opy
+ LI B
=
ske z = 0,126 3 7aan
y 4 Fi p 4
- B80T E{ (Tog171)0p5 1" = Hog; 1" oy “+(Fpy-1) 0y, ]
/ D
+ 0.00023 = (3G, -47,)0,
- 0.00047 3 -(3 +2)a + (3y,,42)0 “c 20 8
> A 21-1750 %0 o Uan 3. Ty
+ 2 4 0
elo z = 0.0625 g (I'_-3)ag 4 + 0.00625 5 (G_~Uy )o 5
] a a : ey e
L
and 1t 1is clear that, in every case, at most the first correc-
tion term will have any numerical importance,
If we transform the individual variables, to make
partial effects li.ear of coefficient one, then we have
1
Yo B G ;

where oy 1s the standard deviation of the new ath variable, and
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ave 2z = 1Q0J + nc other terms

£

Q g
var z = I Tﬁ“ + 0.01 = Tﬁiwzw*gi“ + no other terns,
ske z = X T 3 + 0.6 2 71 27 ¢
7a'a : 4.3 "4
+ 0.03 3 ( -1)7 + -1}t T 21 2
:  AVp3.174 %211 7 VY217 et | Tea1 s
+ two sets of terms of order 7t
g8 "2 e E(I’a-B)Ta4 + terms of order from t° to T,

where subscripts a run from 1 to 2j and subscripts i from 1 to j.

The qualitvative simplification 1s obvious. One term 1lnstead ol

5 plus higher terms in the average. Two instead of five plus

higher in the variance. Three plus two higher instead of four

plus higher in the skewness., One plus higher instead of two plus

higher in the elongation. The quantitative simplification in the

variance 1s also important. If oy ErmoT adls s g second term

in the varlance is less than one-thougandth of the flrst.

In the skewness, however, the second term retalns con-

siderable importance in comparison with the first. Practical

use of these formulas would probably involve one term each for

average, varlance, and, 1f it were required, elongation. If the

skewness were required, at least the second term would, and the

third term might, need examination In terms of transformed indi-

vidual variables, then, terms beyond classical propagatlion of error

need be consldered in at most one formula.
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. 11, The first example general.zed.

If we now consider a delay line in which the nominal
* values of the elements need not be the same from secclon to sec~

tion, 1t becomes convenlent to introduce new guantitlies

= = £ +
ti V/in-l 021 tims delay of ith section.

standard deviation Of‘/L21~l Toyo1
n gl 3
S average value Of’/LQi-l ti

standard deviation of,/C21 121

Moy £
average value c>ih,/02i 1
: In terms of these gquantities, the formul:.s become
ave z = Zti,
= 2 2 2 & 2
var z = 3t,"(Myy 17 + Moy ™ + Moy " My 7)o
® i 3 3 2 2 2
R 2*11 Yo1-1Mp1.1" * 7ogllpy™ + Ofigg ™ Moy
. e 2
¥ 3rpy .12 Mgy oy ™My + 3(rpy=10Mgy My )]
6
+ terms of order > 1,
elo z =3t . (r -3)7 4 4+ (T ,=3)TN, 4
il 2i-1 21-2 e 21
; >
6
R v R RO S A S I
s and are clearly easlly manageable.
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i<, ‘tne second example,

The attenuatlion caused by a rw-section netvork of
series resistance RB and shunt resistance RA and ﬁc, operating

between image impedances R, is

If we write this in terms of changes from ncminal, the init for

each change being 1C% of the corresponding nominal value, we find

_ a -1
B, = R grref '(1’*0*1‘“’;\)

2
i T i
Ry = R =g (1 + 0.1 wy)

=l
Rc = R T (l + 0.1 WC)

where a 1s the deslign attenuatlon, and calculate the necessary
derivatives, the generalized propagation formulas become, if we
introduce abbreviations @, » (not the same as Yo Ye ¢ for the

w's) and 5 by

ol
RiQ
i
s
\\J
1
3
g -
QIR
.'
4+
o
-
on
#
0]
2
o}
]
Jr.
l.__l
[
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the following:
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2% 2 * a4 {oroviaes the avarares of W,, wp and w. vanish)
% kg L

+0.01 B(g,“ + 9(32)

- 0.001 B(y, %3 + 759:7) |

u 4
+ 0,0001 B(FAGA + T, )

s i
+ 0.0001 70, O

Fors LK

- 0.00001 B(G,0,° + G o0,”)
+ 0.00001 y (7AGA - 7CGC) OAQGCE /
o |

']

var z = 0,01 32 (cAa + 4052 + GCQ)

3)

2
C.002 8% (7,0, + 540,

+ 0.0001 g2 i gl Y GAZ’L + (8T, - 1)%“‘1

!' o)
g 0,0001} (52 + #ﬁ&)(aAz + cce)q82+(7“+457)0p2002

AR R R e s

- 0.00002 Bel (EGA - 7A)0A5 i (EGC = 70) 005

(formula continues)
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i CARR

- 0.00001 | (26% + 486) (0,3

2

3 &
& & ksl
?Lﬁi )gﬁ

-(2y *Gﬁyf(yﬁsg+?cac) GA“GC?]

ke z = - 0,001 $3 (yAOAB
- 0.0003 g3

» 36 (FA"]')G

+ 0.0012 835 (er + 0,°)

- 0.00003 531 (26, - 37,)

- 0.00003 B§° ’(yA - T S0 2

A

- 0.00003 Bygj (7 = 1o, +

- 0.00006 8% 3

__<u7AGA

_ 4 3
8ygog” + 7c%

4

T (FC -1} @ 4{

5.2
=

5

9

- 0.00015 (yAaA + yCGC} GAQGCE
"‘;" LI N )

3)

c |
+ 0.0006 g%y o 2,5 2

A Yc

2 57. 2 2
B 27p095°(0, +0,°)

-
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N & ﬁ .
elo 2z = (.0001 ﬁalmiﬁé + g;aﬁi + lﬁgfg ~35 Gﬁﬁ + (Tp-3)o,

-

- 0.00004 g* I-(Gﬁ - by,) 0, + (G - 4y;) ﬂgﬂ

+col

While some of these formulas appear rather lengthy, it 1s clear

that the filrst two terms will give either the average or the

variance to working accuracy.

If we seek to transform the individual variables, we

are lmmediately led to begin by replacing the resistances R of

the shunt arms by their conductances Y. The attenuation then

becomes
Z =1+ 2 R+ & §Y +Y§+R§Y o i ng
2R fg * 3 Ry (¥4 + Yoy + 3 (Y, + Yo + RY, ¥,

and we place

A R )
W *F gew & r0d )
a® 1

R—?—a——— (l + 0.1 VB)

o
i

_la-~-1
Y—"-R-*——* (l+O.1VC)

Q
+

(Note that de/dVA)=(dwp/dVC) = -1, not +1, This deviation from
our general practice 1s a matter of convenience only.)

The generallzed propagation formulas now become:
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ave z = a 4+ ... {proviaed the average values of Var Vg

and Vﬁ var len)

e

var z = 0,01 &2 (GA + aagg + ﬁcz)

+ 0.0001 52(°A2 + ccz) GBE

+0.0001 2 0,% a
+¢ll
gske z = "0.001 53 (7AOA3 + 87BOBS + 70003}
A 2 2 2 2 2 2 2
+ 0.0012 BB (cA <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>